11 research outputs found

    Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL

    Get PDF
    T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution.Peer reviewe

    The regulatory interaction of EVI1 with the TCL1A oncogene impacts cell survival and clinical outcome in CLL

    No full text
    Dysregulated T-cell leukemia/lymphoma-1A (TCL1A), a modulator in B-cell receptor (BCR) signaling, is causally implicated in chronic lymphocytic leukemia (CLL). However, the mechanisms of the perturbed TCL1A regulation are largely unknown. To characterize TCL1A-upstream networks, we functionally screened for TCL1A-repressive micro-RNAs (miRs) and their transcriptional regulators. We identified the novel miR-484 to target TCL1A's 3'-UTR and to be downregulated in CLL. In chromatin immunoprecipitations and reporter assays, the oncogenic transcription factor of myeloid cells, EVI1, bound and activated the miR-484 promoter. Most common in CLL was a pan-EVI1 transcript variant. EVI1 protein expression revealed distinct normal-tissue and leukemia-associated patterns of EVI1/TCL1A co-regulation. EVI1 levels were particularly low in TCL1A-high CLL or such cellular subsets. Global gene expression profiles from a 337-patient set linked EVI1 networks to BCR signaling and cell survival via TCL1A, BTK and other molecules of relevance in CLL. Enforced EVI1, as did miR-484, repressed TCL1A. Furthermore, it reduced phospho-kinase levels, impaired cell survival, mitigated BCR-induced Ca-flux and diminished the in vitro ibrutinib response. Moreover, TCL1A and EVI1 showed a strongly interactive hazard prediction in prospectively treated patients. Overall, we present regressive EVI1 as a novel regulatory signature in CLL. Through enhanced TCL1A and other EVI1-targeted hallmarks of CLL, this contributes to an aggressive cellular and clinical phenotype

    Targeting transcription-coupled nucleotide excision repair overcomes resistance in chronic lymphocytic leukemia

    No full text
    Treatment resistance becomes a challenge at some point in the course of most patients with chronic lymphocytic leukemia (CLL). This applies to fludarabine-based regimens, and is also an increasing concern in the era of more targeted therapies. As cells with low-replicative activity rely on repair that triggers checkpoint-independent noncanonical pathways, we reasoned that targeting the nucleotide excision repair (NER) reaction addresses a vulnerability of CLL and might even synergize with fludarabine, which blocks the NER gap-filling step. We interrogated here especially the replication-independent transcription-coupled-NER ((TC)-NER) in prospective trial patients, primary CLL cultures, cell lines and mice. We screen selected (TC)-NER-targeting compounds as experimental (illudins) or clinically approved (trabectedin) drugs. They inflict transcription-stalling DNA lesions requiring TC-NER either for their removal (illudins) or for generation of lethal strand breaks (trabectedin). Genetically defined systems of NER deficiency confirmed their specificity. They selectively and efficiently induced cell death in CLL, irrespective of high-risk cytogenetics, IGHV status or clinical treatment history, including resistance. The substances induced ATM/p53-independent apoptosis and showed marked synergisms with fludarabine. Trabectedin additionally perturbed stromal-cell protection and showed encouraging antileukemic profiles even in aggressive and transforming murine CLL. This proof-of-principle study established (TC)-NER as a mechanism to be further exploited to resensitize CLL cells

    Noncanonical effector functions of the T-memory–like T-PLL cell are shaped by cooperative TCL1A and TCR signaling

    No full text
    T-cell prolymphocytic leukemia (T-PLL) is a poor-prognostic neoplasm. Differentiation stage and immune-effector functions of the underlying tumor cell are insufficiently characterized. Constitutive activation of the T-cell leukemia 1A (TCL1A) oncogene distinguishes the (pre) leukemic cell from regular postthymic T cells. We assessed activation-response patterns of the T-PLL lymphocyte and interrogated the modulatory impact by TCL1A. Immunophenotypic and gene expression profiles revealed a unique spectrum of memory-type differentiation of T-PLL with predominant central-memory stages and frequent noncanonical patterns. Virtually all T-PLL expressed a T-cell receptor (TCR) and/or CD28-coreceptor without overrepresentation of specific TCR clonotypes. The highly activated leukemic cells also revealed losses of negative regulatory TCR coreceptors (eg, CTLA4). TCR stimulation of T-PLL cells evoked higher-than normal cell-cycle transition and profiles of cytokine release that resembled those of normal memory T cells. More activated phenotypes and higher TCL1A correlated with inferior clinical outcomes. TCL1A was linked to the marked resistance of T-PLL to activationand FAS-induced cell death. Enforced TCL1A enhanced phospho-activation of TCR kinases, second-messenger generation, and JAK/STAT or NFAT transcriptional responses. This reduced the input thresholds for IL-2 secretion in a sensitizer-like fashion. Mice of TCL1A-initiated protracted T-PLL development resembled such features. When equipped with epitope-defined TCRs or chimeric antigen receptors, these Lckpr-hTCL1AtgT cells gained a leukemogenic growth advantage in scenarios of receptor stimulation. Overall, we propose a model of T-PLL pathogenesis in which TCL1A enhances TCR signals and drives the accumulation of death-resistant memory-type cells that use amplified low-level stimulatory input, and whose loss of negative coregulators additionally maintains their activated state. Treatment rationales are provided by combined interception in TCR and survival signaling

    Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling

    No full text
    T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive neoplasm of mature T-cells with an urgent need for rationally designed therapies to address its notoriously chemo-refractory behavior. The median survival of T-PLL patients is <2 years and clinical trials are difficult to execute. Here we systematically explored the diversity of drug responses in T-PLL patient samples using an ex vivo drug sensitivity and resistance testing platform and correlated the findings with somatic mutations and gene expression profiles. Intriguingly, all T-PLL samples were sensitive to the cyclin-dependent kinase inhibitor SNS-032, which overcame stromal-cell-mediated protection and elicited robust p53-activation and apoptosis. Across all patients, the most effective classes of compounds were histone deacetylase, phosphoinositide-3 kinase/ AKT/mammalian target of rapamycin, heat-shock protein 90 and BH3-family protein inhibitors as well as p53 activators, indicating previously unexplored, novel targeted approaches for treating T-PLL. Although Janus-activated kinase-signal transducer and activator of transcription factor (JAK-STAT) pathway mutations were common in T-PLL (71% of patients), JAK-STAT inhibitor responses were not directly linked to those or other T-PLL-specific lesions. Overall, we found that genetic markers do not readily translate into novel effective therapeutic vulnerabilities. In conclusion, novel classes of compounds with high efficacy in T-PLL were discovered with the comprehensive ex vivo drug screening platform warranting further studies of synergisms and clinical testing
    corecore